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A scheme for computing the steady state transport of neutral atoms cylindrical plasmas is 
described. The physical model used represents atoms emerging from charge exchange 
collisions by an isotropic source of neutrals with energy equal to 3/2 times the local ion 
temperature. The process of charge exchange and impact ionization by electrons and ions are 
included. The transport can be described by an integral equation for the neutral source 
density, and this equation approximated by a set of algebraic equations for the zone average 
source densities. A derivation of the appropriate kernel and a technique for computing it are 
presented. Comparison of computed results with predictions of other, more exact, codes 
exhibit quite satisfactory agreement for temperatures as high as 10 keV. 

1, INTRODUCTION 

The transport of neutral atoms often plays a significant role in the particle and 
energy balance of thermonuclear plasmas. Typically, there is an influx of low energy 
(a few eV) neutral atoms from the wall which, upon penetrating the plasma, can 
undergo ionization or charge exchange scattering. The former possibility in effect 
simply adds cold plasma. Charge exchange events, however, replace the cold neutrals 
by energetic atoms which have a high probability of leaving the system without 
further interaction and are hence a potentially serious energy loss mechanism. Proper 
account of such processes must be included in any plasma simulator code. 

In most CTR devices currently under study, and even in some full scale reactor 
concepts, the characteristic mean free path of a neutral atom is not small compared 
with plasma dimensions, and under these conditions a simple diffusion theory 
treatment is not justifiable. It has been pointed out [ 1 ] that this problem is essentially 
identical with that of neutron transport and that neutron codes would be readily 
adaptable to the present problem. An example of this approach is discussed in the 
paper of Gilligan et al. [2], who used the ANISN code which permits a very detailed 
treatment of energy and momentum transfer in the scattering process. 

Unfortunately such codes are much too slow for plasma simulators. In this 
application the neutral transport routine is usually by far the most time consuming 
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part of the code so that there is considerable incentive for development of fast special 
purpose codes which take advantage of whatever simplification the problem has to 
offer. Some of the early work in this direction is summerized in the review article by 
Hogan ]3]. 

The code ANTIC (Algorithm for Neutral Transport in Cylin ers) described here is 
such s. special purpose routine which is accurate and fast enough for use as a 
simu!ator subroutine at least if the number of zones is not too large, The basic 
simplifying feature upon which the code is based is that charge exchange is a very 
soft interaction so that the velocity distribution of the outgoing atoms is characteristic 
of the local ion temperature and independent of the velocity of the incident a.tom. 
This is a good approximation for energies < 10 keV which covers most present CTR 
applications. A consequence of this approximation is that ail information about the 
neutral distribution function is contained in the neutrai source density from which the 
compiete distribution function can be constructed by a quadrature. This means that 
the d~mensio~a~ity of the problem is only that of the coordinate space and not of both 
coordinates and velocities. It is straightforward to obtain an integral equation for ihe 
neutral source density which can be approximated by a finite set of algebraic 
equations and solved by standard methods. 

Two other codes have recently been developed which are based upon the same 
concept. The code by Burrell [4] assumes that all cross sections are independent of 
:he neutral energy and describes the charge exchange coliision source by a Maxweli 
dis~ibution at the local ion temperature. The constant cross section a~~rox~matio~ IS 
probably valid for plasma temperatures up to a few keV. While this approximation is, 
strict!y speaking, not essential, proper inclusion of the energy dependence *wouid 
signlficant!y complicate an already elaborate claculation of the integral equation 
kernei. 

The SPUDNUT code of Audenaerde et cri. [5] keeps the velocity dependence of the 
cross sections but approximates the distribution function for the newly born neutrals 
in each zone by an isotropic monoenergetic distribution at energy equal to 3/2 timer 
he iocai plasma temperature. This is an enormous simplification which, in s/ah 
geometry, makes calculations of the kernel almost trivial. The restriction to s&b 
geomelry. however, limits the applicability of the code to very large systems where 
the only primary source of neutrals is at the outer wails and there are no significant 
sources in the interior. 

The code described in the present paper is essentially a genera!iration of 
SPUDNUT to a cylinder and makes the same spherical shell approximation for the 
velocity distribution of newly created neutrals. In view of the relativeiy weak energy 
dependence of the relevant cross sections this model appears intuitiveiy reasonab4e. 
but is not easiiy justified a priori. It will be shown by comparison of test probients 
with more exact codes that the code produces quite satisfactory results over the 
parameter range of interest in most CTR applications. 

The next section of this paper is devoted to a discussion of the physicai model and 
its formulation in terms of an integral equation for the neutral source densit:!. In 
Section 3 we describe the numerical method for approximating the kernei of the 
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integral equation and the other quantities required to describe the cold influx, escape 
to the walls, etc. A sampling of numerical results which compares the results of 
ANTIC with other published results is presented in Section 4. In Appendix A we 
present a derivation of the integral equation for the neutral source density from the 
Boltzmann equation, while Appendix B contains a derivation of the discrete zone 
approximations to the kernel. 

2. FORMULATION OF THE PROBLEM 

Consider a cylindrical plasma column in which the electron and ion temperature 
and density profiles are known functions of radius. Low energy neutral hydrogen 
atoms are injected from the wall at a specified rate and energy. It will be assumed 
that the wall neutrals emerge with a cosine distribution relative to the boundary 
normal so that the velocity distribution near the wall is isotropic in a hemisphere. 
These atoms enter the plasma where they are either ionized or undergo charge 
exchange collisions. The charge exchange collisions provide a first generation source 
for further generations of charge exchange by atoms born in the plasma. The velocity 
distribution of neutrals emerging from charge exchange events is isotropic and 
characteristic of the local ion temperature. Hence we distinguish between two 
populations of neutral atoms; those which came from the wall, which we call “cold,” 
and those born in the plasma, which we call “hot.” 

On the basis of these assumptions, charge exchange events at the point r constitute 
a source of energetic neutrals of energy E described by 

$(r) dry EL (1) 

where 

I g(r, E) de = 1. (2) 

The function 4(r) is the charge exchange source density at r while g is the locally 
defined energy distribution of the emergent neutrals. Let there also be an external 
source of hot neutrals, #O(r), which are due to charge exchange by cold neutrals, 
recombination, etc. Then as is shown in Appendix A the neutral source density 
satisfies the integral equation 

9(r) = 4’(r) + ( G(r, r’) #(r’) d3rr, (3) 

where 

G(r, r’) = I uX(r, E) 4EAzy’;), g(r’, E) dc. (4) 
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In Eq. (4) t is the optical depth 

r(r, r’, E) = fr cqr”, E) dr”, 
-r 

where the integral is taken along the path from P’, to r. The symbol a(r, a) denotes the 
reciprocal mean free path at r of a neutral atom of energy E. Superscripts x, i, i’ 
denote charge exchange, ionization, and total, respectively. In each case a is equal to 
the plasma density multiplied by a suitable everage of the toss section over a therma! 
distribution. 

To reduce (3) to a set of algebraic equations the cylindrical volume is divided into 
a number of coaxial zones in each of which the plasma properties are spatially 
uniform. Let the zone boundary radii be denoted by Ri and let the ith zone be 
bounded by Ri and Ri_ r . We define #i to be the average value of 4 in that zone: 

where Vi is the zone volume in an annulus of unit height. If in the right-hand side of 
(3) $ is approximated by its average value in each zone, then we obtain the set of 
algebraic equations 

where 

The main task of the code, and by far the most time consuming, is the calculation 
of the matrix K. Once K is known the solution of Eq. (7) and construction of the 
output data are fast and straightforward. 

Finally, the calculation of the kernel is enormously simplified if we assume g in 
each zone to be monoenergetic at the thermal energy corresponding to that zone, i.e.; 

g(r, 6) = d(E - E,), (3) 

where E, is the thermal energy at r. Equations (4) and (5) then become 

-r(r.r’) 

G(r, r’) = d(r, r’) e 
47r~r-ty~ 

r’ 
r(r, P’) = I a’(r”, r’ ) dr”, 

r 

lso) , 
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The notation c~(r, r’) is used to denote the absorption coefficient at r for neutrals born 
at r’. Notice that the G defined by Eq. 10 is not symmetric since the particle energy is 
tied to the temperature at r’. 

To completely specify a problem it is also necessary to know #p, the 
inhomogeneous term in Eq. (7). The sources which are due to recombination or 
neutral beam capture must be provided externally. That part which is due to cold 
neutrals from the wall which penetrate to zone i is calculated by the code in much the 
same manner as K,. 

At this point Eq. (7)describes a system with absorbing boundaries, i.e., atoms 
which leave the plasma are never returned. If an appreciable number of emerging fast 
neutrals are recycled at the wall they can significantly modify the net particle and 
energy transport. To the extent that the recycled atoms can be considered as 
belonging to the cold population this effect is trivial and easily accounted for outside 
of the transport code. In general, however, the recycled atoms will have a broad 
energy distribution ranging from essentially zero up to the incident energy, and 
proper inclusion of these neutrals is more complicated. There is a reasonably simple 
way in which this process can be included in the present code. TO do this we take 
advantage of the property that a kind of group structure is provided by the fact that 
each zone has a unique thermal energy, ai, associated with it. We can then classify 
the reflected particles according to the zone number with the same thermal energy, 
which establishes a one to one correspondence between energy group and zone 
numbers. To obtain a full description of recycling we first define the following quan- 
tities: Wi = probability that atoms born in zone i survive to reach the wall, 
Rji = probability that an atom of energy i is recycled into energy group j, 
rij = probability that atoms from wall in group i undergo charge exchange in zone j, 
and Tij = tiLiij = probability that neutrals from the wall in group i traverse the entire 
plasma without interaction and return to the wall. In terms of these quantities it is 
easy to verify that the modification to K which includes the proper boundary 
condition is 

K+K+l-(1 -RT)-‘RW. (13) 

This modification includes recycling in a fully implicit fashion and requires no 
iteration. The code presently caculates the quantities W, T, and r. The matrix R 
contains all of the wall interaction physics which must be supplied by a suitable 
subroutine. Although we have been unable to find sufficient experimental or 
theoretical results for calculation of realistic reflection coefficients we have incor- 
porated a simple reflection model which, while not physical, does include most of the 
required logic. In particular, we assume that the neutrals arriving at the wall are 
diffusely reflected with no energy change and that the reflection coefficient is 
independent of energy. The reflection is supplied as input data and if it is non- 
vanishing the r matrix is calculated as described below. It will be easy to include a 
more realistic model when the required data are available. As it is presently 
implemented the recycling option increases the running time by almost a factor of 2. 
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3. METHOD OF COMPUTATION 

In. Appendix B it is shown how calculation of the elements of K is reduced to a 
single quadrature. The integration variable, y, is essentialy the distance of closest 
approach to the axis of a family of trajectories lying in the plane z = 0. For each 
value of 4’ Eq. (B 10) expresses the contribution of that ray to K, for all pai.rs of zones 
crossed by that trajectory. In practice, of course, the integration is replaced by a 
discrete sum. The most direct way of evaluating K would to be choose an i, i pair, 
perform the numerical integration with respect to y and proceed to another zone nair. 
However, the tracking along a given ray generates geometrical data for that ray 
which can be used in the computation for other zone pairs, a.nd it is clearly more 
efficient to use a scheme where all the tracking data computed for a given 4’ are used 
before proceeding to the next y. We therefore use an integration scheme which, in 
effect, calculates ali elements of K simultaneously. The essentials of the scheme are a.s 
follows: Consider a fixed value of y and its corresponding ray, and let j represent the 
left most segment of that ray. Starting at j we march to the right and as each zone is 
crossed calculate the appropriate term in the integrai of (BlO) which gives the 
contribution of that ray to the corresponding K,. When the right hand boundary is 
reached we calculate Wj. By appropriate bookkeeping the contribution to T and to 
the r matrix are also obtained, and when the last zone is crossed-i is moved one zone 
10 the right and the process repeated until j reaches the right end. At this point she 
code proceeds the next JJ value and starts over. 

It remains to choose a quadrature scheme for the JJ integration. A simple method 
for which the weights are independent of i, j is the following. The J- axis is divided 
into N intervals by the zone radii R,. In each interval choose a vatue of q’, at which 
the integrand in (BlO) is evaluated. If the width of the & zone = 6, then we 
approximate 

Jo ?7=1 

The choice of values for y, is still not determined, and we choose them in such a way 
as to guarantee particle and energy conservation. It is obvious that each path 
integration is identically conservative, but the final K matrix is in general not. 
Consider the nth ray and its intersection with the ith, zone, defining a segment of 
length Ii,. To each segment we associate a rectangle of width S, which is shown as 
the shaded area in Fig. 1. It is easy to show that if the sum of the shaded areas i:r 
each zone equals the cross sectional area of the zone, i.e., 

then K is identically conservative. This scheme requires tracking exactly N days. 
Better accuracy is obtainable by further subdividing the y interval but we have 
learned from numerous examples that the gain in accuracy is typicahy a few percent 
which is not significant in view of our other approximations. 
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FIG. 1. Trajectory through the mesh of a typical ray. Intersections of ray with boundaries of zones 
i = 6, j= 5 are numbered. Dotted lines indicate boundaries of swath represented by the ray. Shaded 
areas indicate volume defined by the intersection of the swath with zone 8 as approximated in the code. 
Values of the index labelling the zone crossings are indicated along the ray. Zone numbers are along the 
x axis. 

The most important outputs from the code are the rates of change of plasma 
particle density and energy due to neutrals. They are easily obtained once 4 is known. 
In particular the net rate of creation of plasma ions from hot neutrals in the ith zone 
is 

Similarly the energy deposited in a zone by hot neutrals is 

Corresponding expresions for the contribution of the cold neutrals are 

(16) 

where ai is the absorption coefficient in zone i for the cold group and E, is the energy 
of the cold group. The contribution of the energy required to ionize is small and has 
been neglected. For the purpose of comparison with other codes we also compute the 
neutral density in each zone given by 

Kij4j 
q=C-- 

i vja> (17) 
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fo‘or the hot neutrals and 

for the cold group. Finally the code also provides the total current to the wall of 
neurrals from each zone which is in effect a crude spectrum of the emergent particles. 

A major fraction of the running time is spent in evaluating HZ functions, since the 
number to be calculated scales as N3. To speed this up we express the function as 
exp(-r) times a slowly varying function which is approximated by a polynomial. 
Running time on the CDC 7600 for a 20 zone problem is typically -0.12 seconds. X 
version of the code exists which calculates the H, function by look up and inter- 
polation in a tabie which is generated only once. This version is somewhat faster at 
the expensive of additional storage requirements. For a modest number of zones this 
code appears to be appreciably faster than other comparable codes for which we have 
information. Obviously, however, for a very large number of zones, the N3 scaling 
makes this scheme less attractive. The crossover at which, for example, the Hughes 
and Post code becomes faster is in the neighborhood of 40 zones. 

4. NUMERICAL RESULTS 

The charge exchange cross section used by the code is raken from [6]. For neutrats 
of energy E in a zone of ion temperature Ti (eV) we define 

where A is the atomic number: and 

5.y = 6.94 lo- ‘j IV x (1 - 0.155 log,, &_)l/(l f 1.12 10-‘5&~3). 

The rate for ionization by electron impact is adapted from (7) and given by 

i20) 

L’-1;;= 7.35 10-7 x lo-- (0 515lo~,~T,)-2.563ilag,,~~-5.231 (A/E)‘:” (21) 

for TZ > 2 eV and zero otherwise. For ionization by ion impact we use a simple fit to 
the curves in [S] which is valid for lo3 5 Ti 5 4 x 10”. 

u-‘av = 1.51 10-16~ 10--1.?5(4.4-lloglae,)?. (22) 

Figure 2 displays results of a test problem comparing the total neutral density and 
mean energy as computed by ANTIC and given by Hughes and Post [63 for a small 
low temperature plasma. Differences between these results are ~nsigni~ca~~ 
particularly in view of the simplified cross sections used. Results of a similar 
comparison with computations by Burrell (41 are not shown since the results are 
indistinguishable on the scale to which the graphs can be read. To test the code a: 
higher temperature we have run the cases for the TFTR regime described by Gilligan 

58 I/40/1-8 
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FIG. 2. Comparison of ANTIC calculation and results of [6]. Neutral density and “temperature” are 
plotted as functions of radius. Plasma parameters are n, = ni = 5 X 1013[ 1 - (r/a)‘] cmm3, T, = 2 x 
lO’(1 - (r/a)‘] eV, Ti = 1 x 103[ I - (r/u)l] eV. The plasma radius, a, is 40 cm and the cold neutrals 
enter with 3 eV and carry a flux = 5.98 10” cm-’ see-’ corresponding to an edge density of 10” cm-‘. 

et al. [2]. The density profiles in Fig. 3 agree very well but with a minor discrepancy 
in the inner zones. It is not clear whether this difference is due to the breakdown of 
the isotropic scattering assumption at high energies, or to the very crude expression 
we use for the ion impact ionization cross section. 

While calculation of neutral density profiles are in excellent agreement with other 
codes, one expects that the neutral energy distribution will be less accurate in view of 
our replacement of the thermal distribution in each zone by a monoenergetic 
spectrum. To test this we have attempted to compare the ANTIC calculation of the 
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FIG. 3. Comparisons of neutral density profiles computed by ANTIC, from ANISN 121 and from 
SPUDNUT 15 ] for a TFTR plasma. Plasma profiles are II, = xi = !4( 1 - (u/a)‘) + I] X 10” cm ‘. 
T< = T.[9.95(1 - (r/n)‘) + O.OS] keV. The plasma radius, a. is 85 cm and the cold neutral ir flux is rhe 
same as in Fig. 2. 

spectrum of neutrals emerging from the plasma with the resuhs of i2], This is done 
by taking the code output of the emergent flux of neutrals born in each zone and 
converting it into an energy spectrum by associating with each zone a corresponding 
energy bin of width given by the density of zone temperatures. The resulting 
comparison is shown in Fig. 4. The major difference between the two spectra is due 
simply to the loss of the high energy tails in our model, At the iow end of the 
spectrum ANTIC gives a minimum energy corresponding to the temperature of the 
coldest zone, which depends strongly upon the fineness of the zoning near the plasma 
edge. However, in the interval between 3/2 times the Lowest and highest zone 
temperatures the agreement is surprisingly good. Since the part of the spectrum 
carrying the great bulk of the energy is well represented, this spectrum should be 
good enough to use as input for a meaningful wall recycling calculation.’ 

’ I: was pointed out by one of the referees that a better calculation for the spectrum is needed for the 
interpretation of neutral spectra. This can easily be done. just as in [j i. and we intend to add &is featurr 
in the near future. 
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FIG. 4. Comparison of energy spectra of emergent neutral for the same case as Fig. 3. 

SUMMARY 

We have described a code which solves the transport problem for neutral atoms in 
a cylindrical plasma by solution of the integral equation for the local neutral source 
density. The basic simplifying assumption which makes the scheme feasible is that 
charge exchange events in a given zone create an isotropic distribution of 
monoenergetic neutrals with energy equal to 3/2 times ,the local ion temperature. 
Comparison with other codes gives excellent agreement even at temperatures up to 
10 keV. 

APPENDIX A: DERIVATION OF THE INTEGRAL EQUATION 

We here derive the basic integral equation for the source density 4(r). Let the number 
of neutral atoms of energy E created per unit volume per unit time in the vicinity of r 
be 4(r) g(r, E), where g is the normalized energy distribution function and 4 is the 
total source strength. The source is the sum of two contributions; an external source, 
@‘, (such as recombination) and charge exchange events due to neutrals born 
elsewhere in the plasma. Let the neutrals be described in terms of a distribution 
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functionf(r, Q, E) where E is the energy and Q the direction of flight. In terms of~f the 
source density can be written 

where $’ is the external contribution, v the speed corresponding to E, and c? the 
reciprocal mean free path for charge exchange of an atom of energy E. c! can be 
written as the local plasma density times a suitably averaged charge exchange cross 
section. We can also define a reciprocal mean free path for ionization, ei and a total 
a: = (?p + ai. 

The distribution function satisfies a Boltzmann equation 

For fixed Q we can choose a coordinate system with z axis parallel to ,O, so TV 

becomes a/&~, and for every x, y the solution of (AZ) is 

for any z. < z. Writing z’ - z = s and assuming no external sources j-43) is 
equivalent to 

We now insert the result into (Al) giving 

Finally multiplying numerator and denominator of the integrand by s’, writing 
r’ = P - Szs and noting that S* ds dSk = d3r’ leads directly to the desired result, Eq. 4. 

The physical meaning of Eqs. (4) and (A5) is simply that the charge exchange rate 
at r is the neutral source strength at r’ multiplied by the probability that these atoms 
pass through a unit volume at r times the probabiiity of charge exchanging is that 
volume and integrated over all r’, plus any externally produced sources. 

APPENDIX B: CALCULATION OF THE KERNEL K, 

In this appendix we reduce the three-dimensional kernel obtained in Appendix A to 
one dimension and obtain its discrete approximation. The final result is an expression 
for each element of K in terms of a single integral. 
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We write Eqs. (3) and (10) in cylindrical coordinates and let the point r lie in the 
plane z = 0. The integral is then 

The point r’ is represented by its z coordinate and the projection of the ray from r to 
r’ onto the plane z = 0. The latter is, in turn, described by its length, s, and the unit 
vector a,. The optical thickness, r, is redefined to be measured along the projected 
path in the reference plane. Since all physical variables are independent of z this 
integration can be done at once. For this purpose and for subsequent calculations it is 
useful to introduce the set of functions 

H,(z) = m 
-z(1+u2)V~ 

i e + U2)(n+1)/2 du = 2 I 
00 e --ru 

--oo (1 du. 
1 zP(U - I)“’ 

These functions satisfy 

Hi,+ l(7) = -H,(7), 

Ho(r) = K,(s), 

032) 

(B3) 

where K, is the usual modified Bessel function of the second kind. (Except for the 
factor 2 they are the Ki, functions of [9].) Useful special values are 

H,(O) = n, H,(O) = 2, HJO) = 742, 034) 

while for t + 1 

(B5) 

Equation (Bl) then becomes 

#(r> = l”(r) + $1 cl% r + a,s) H,(r) #(r, r, + fi,s) ds da,. W) 

To obtain #i we average #( ) r over the ith zone. Inverting the order of integration, 
axisymmetry amplies that the integral is independent of a, so there is no loss in 
generality in choosing it parallel to the x axis. The integrals are then evaluated by 
fixing J’ and carrying out the r and r’ integration along y’ =y, X’ < X. 

The remaining steps require introduction of a certain amount of notation. Figure 1 
represents the geometry of a typical track along y = const as it passes through the 
mesh. Numbers along the x axis are the numbers of the zones, while along the track 
we number the path segments from left to right by the index m. Note that there are in 
general two values of m for each zone. We define the symbol CL to mean the sum 
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over a!1 m’s crosing the zone i. For a typical pair of m values we label the points at 
which the ray crosses the zone boundaries from 1 to 4 as illustrated in the figure for 
i= 6,j= 5. 

Since the a’s are constant in each zone we can now write 

dx dx’ H, [7(x’, x)] p38) 

The integrals along the path segments are now easily carried out using the 
recursion relations (B3). For given m and m’. a typical term in (B8) inciudes 
expressions of the form 

We consider separately the cases m # m’ and m = m’. 

Case 1. m fin’. 
We note that d.x’ = -dr/ajj and dx = dt/a$ SO that 

Applying the same device to the x integration we obtain 

where t,? = 7(x3, x2), etc. 

Case 2. m = m’. 
For this case we need 

J I rX’ dx -’ dx’ H,[r(x’, x)] 
x2 x2 

Using the same method this becomes 
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Combining these results we have 

Equations (B 10) and (B 11) provide the final expressions for the kernel which are 
actually evaluated by the code. The scheme for carrying this out is described in 
Section 3. 

To specify the problem completely we also need expressions for Wi, Ti, and r,. 
These are all calculated by the same method as above. In the code we assume atoms 
leave the wall with a cosine distribution, i.e., their angular distribution is isotropic in 
a hemisphere. It is easy to show that 

where the point 3 is on the wall and point 1 and 2 are the end points of the path 
segment in zone i. Calculation of wall contribution to the inhomogeneous term, 4: is 
the same as that for J’, but with sj replaced by the energy of the cold group. 

Finally, the flux of atoms born in zone i which reach the wall per unit #i is 

1 
Ri wi=---- 

I 2rcRafj o [HA4 - Hd~d1dq7 @13) 

while the flux transmitted by the plasma per unit incoming flux is 

where r is evaluated along the entire chord. It is in principle possible to allow the 
influx to be anisotropic. In this case the dependence upon polar angle will bring in H 
functions of order higher than 3 while the azimuthal dependence introduces an 
appropriate weight function in the 4’ integration. 
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